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Reactance matrices for clectron collisions with ions in configurations 1s?2s22p? (¢ = 1 to 5), calculated
by Saraph, Seaton & Shemming (1969), have been fitted to analytic functions of the encrgy and extra-
polated to cnergies which give bound states with configurations 1s?2s22p?(S; L;) nl SL. The positions of the
bound states are calculated using methods of many-channel quantum defect theory. Allowance can be made
for the fine-structure encrgy of the ion core, by using a representation (S;L;J;) nlj J or a pair-coupling
representation (S;L;J;) nlK, J.

The calculated level positions are compared with positions determined experimentally. The most
detailed results are for the np levels, but some results are given for ns and nd levels. Some semi-empirical
adjustments arc made in the calculated matrices, so as to obtain improved agreciment between observed
and calculated levels. In many cases the most serious source of error in the calculations is the neglect of
interactions betwcen configurations 2s22p%! and 2s2p?+1n’l’. For the morc highly ionized systems these
interactions give rise to perturbed series. A discussion of results for valence-clectron states in the neutral
atoms, C1, N1, O1, F1and Ne1 is followed by a discussion of the various iso-clectronic sequences.

The results enable us:

(i) To assess the accuracy of the calculated reactance matrices.

(ii) To make identifications. In most cases, but not all cases, the assignments obtained for parentage,
and for pair-coupling quantum numbers, agree with assignments which have been suggested previously.
In some cases it is found that large admixtures of states occur and that no meaningful assignments of
parentage or pair-coupling quantum numbers can be made.

(iii) To make predictions. Calculated positions of energy levels, and crror estimates, are given for some
levels which have not been observed.
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2 HANNELORE E.SARAPH AND M. J.SEATON

1. INTRODUCTION

A previous paper (Saraph,Seaton & Shemming 1969, to be referred to as paper I) was concerned
with a study of excitation by electron impact of ions in configurations 1s22s22p2. The results
obtained are used in the present paper as a basis for the calculation of energy levels for configura-
tions 1s22s22p?nl.

The calculation of energy levels for atomic configurations 1s22s?2p?nl, with ¢ = 1 to 5 and
n > 3, is complicated by the fact that the 1s2s22p? ion core may have a number of different
energy levels. Consider first the case in which fine structure is neglected. For ¢ = 2,3 and 4 the
2p? core has three terms, 3P, D and S for ¢ = 2 and 4, and S, 2D and 2P for ¢ = 3. We denote
these terms by S; L;, ¢ = 1, 2 and 3, in order of increasing excitation energy. On adding a valence
electron to the core, we may use a representation

o = 1s22s22pe(S; L;) nl SL. (L.1)

It is usual to refer to S; L; as the parent term of the ion core. However, for some values of [ SL it is
found that one can obtain several different states «, each having different values of S; L;. Since
the Hamiltonian is not diagonal with respect to \S; L; it follows that, in such cases, a unique
assignment of parent terms cannot be made. The valence electron levels form mutually perturbed
series, converging to different terms of the ion core.

The fine structure energies of the core terms are generally much larger than the fine structure
energies for the valence electron. When account is taken of fine structure it is therefore desirable
to specify the total angular momentum J; of the core. We may use a representation

o = 1522522pe(S; L, J;) nljJ, (1.2)

in which the angular momentum J; is coupled to the total angular momentum j of the valence
electron. It is sometimes more convenient to use a pair-coupling representation,

o = 1s22s22p7(S; L; J;) nl KJ, (L.3)

in which the angular momentum J; is coupled to the orbital angular momentum / of the valence
electron to give a resultant K, which is then coupled to the spin of the valence electron to give the
total angular momentum J. For the ions with ¢ = 1 and 5 we have a single core term, §; L, = 2P,
but two fine-structure core levels, 2Py and 2Py.

Let us suppose that energy levels have been calculated neglecting fine structure. For the higher
series members the calculated energy differences between neighbouring states will be small
compared with the fine-structure energy differences in the ion core. Inclusion of fine structure will
then modify profoundly the energy level structure for the high levels. We obtain mutually per-
turbed series converging to each of the fine-structure core levels.

Little work has been done previously on the calculation of energy levels for configurations
2p2nl. One approach would be to use standard methods of perturbation theory, but in many
cases it would be difficult to decide which states o should be included for each energy level.
A much better approach would to be solve the coupled equations of Hartree-Fock theory, taking
all states of the ion core into account. The procedure which we adopt is, in essence, equivalent
to the solution of the coupled Hartree—Fock problem, but the computations are greatly simplified
by using techniques of generalized quantum defect theory. In this theory, which is summarized
in § 2, one obtains expressions for the calculation of energy levels which involve certain analytic
functions of the energy. These functions may be calculated for a few values of the energy and
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CALCULATION OF ENERGY LEVELS 3

fitted to suitable interpolation and extrapolation formulae. A further advantage to be gained
from the use of quantum defect theory is that it provides a convenient method for taking account
of the fine-struture separations of the terms of the ion cores. In practice we use the results of
paper I, obtained from approximate solutions of the coupled Hartree—Fock equations at energies
corresponding to continuum states of the electron-ion systems. The techniques used for calcu-
lating and extrapolating the analytic functions of the energy are described in § 3, and methods
used for the calculation of energy levels are discussed in § 4.

Comparisons between calculated and observed energy levels, discussed in § 5, enable us to:

(i) Assess the accuracy of the calculations.

(if) Make identifications. For each energy level we obtain a wavefunction which is a linear
combination of states in one of the representations, (1.1), (1.2) or (1.3). If one such state gives
the dominant contribution, the quantum numbers for this state may be used as a label for the
designation of the level concerned. In most cases our designations are in agreement with those
which have been suggested previously, but there are some cases for which our work shows that
the designations should be changed. We also find some cases for which there is a large admixture
of states, and for which no meaningful assignment of quantum numbers can be made.

(iii) Make predictions. We are able to calculate the positions of levels which have not been
observed and, from comparisons of theory and observations for other levels, estimate the probable
error in the calculated positions.

The main approximation in all of our work is that we neglect interaction with configurations
which are not of the type 152s22p? z/. In many cases the most important interacting configurations
not taken into account will be of the type 1s22s2p2+! n’ I, We have attempted to make some semi-
empiricial corrections to the calculations, but always retaining a framework of algebraic theory
which is consistent with the restriction of considering only 1s%2s2p2nl configurations.

Comparisons of observed with calculated energy levels allow us to make some assessment of
the accuracy of the collision cross-section calculations of paper I. In some cases we can make
semi-empirical adjustments to the cross-sections, using the results obtained in making similar
corrections to the energy levels. These questions are discussed in § 6, which also includes some
remarks on resonance structures in the cross-sections.

2. SUMMARY OF QUANTUM DEFECT THEORY

We summarize some results of quantum defect theory (Seaton 19664, b, 19694, to be referred to
as QDTI, 11 and viI).
Let E be the total energy in Rydberg units of an ion core plus an added electron. Put

E = E“+22€a, (2‘1)

where a specifies a state of the system and where E, is the energy of the ion core for this state and
zis the charge on the ion core. When the ion core has energy £, the added electron has an energy
z%,. We say that « is an open channel if ¢, > 0 and a closed channel if ¢, < 0. For each closed
channel « we define an effective quantum number

Vo = (_ 1/605)% <€a < O)‘ (2'2)

For a bound state of the electron-ion system we have ¢, < 0 for all channels a.
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4 HANNELORE E.SARAPH AND M.J. SEATON

2.1. One-channel theory

It is convenient to consider first the simple case of a system with only one channel e. If we drop
the subscript «, the energy for a bound state of a valence electron is z%, where

€, = — 1V, (2.3)
The Rydberg formula is v, = n—pue,), (2.4)

where 7 is an integer and where the quantum defect, ju(¢), varies slowly as a function of e.

For the continuum states, ¢ > 0, the radial function for the added electron has an asymptotic
phase 8(¢) relative to the phase of the regular Coulomb function. It may be shown (Seaton 1955,
1958; QDTI) that Tu(e) is an analytic continuation of &(¢). If the phase d(¢) is known we may
therefore calculate the quantum defect z(€) by extrapolation and hence calculate the energies
of the bound states.

Let us define R(e) as [tan 5() for ¢> 0, 1

R(e) = (2.5)
1tan mu(e) for e< ().J
The condition (2.4) for bound states may then be written
R+tanmy = 0. (2.6)

The advantage of this form is that it may be generalized to the many-channel case (§ 2.2).
Knowing R(¢), we may calculate the asymptotic form of the normalized bound-state radial
functions. Let the radial function be P(p) where p = zr and put

Pp) = 2() Z, (2.7)

where 2 (p) has asymptotic form
o) = (2plyerK, (29)
K=[»Ty+l+1)T(v-0])]-* (2.9)
The normalization condition is 2% =1 (2.10)
where =14 (2/m)v-3cos?mvdR(e)/de. (2.11)

It may be noted that, for v large, { ~ 1 and the normalization condition becomes Z2 = 1,
In order to make accurate cxtrapolations, some further refinements must be introduced. Let
us define

A= ]l;[o(l+[)26) (2.12)
o [(1—@xp(—21‘rN6))R/A for ¢> 0,1
and Ye) = \R/4 for ¢<o. J (213)

In practice we usually consider encrgies such that exp (—2/\/¢) < 1, and the factor

(1—exp (—2m/{e))
in (2.13) may thenbe neglected. The practical extrapolation procedure, which is justified in QDT 1,
is to put Y=Y, Y (2.14)

and to fit ¥ and ¥, to polynomials in the energy. Accurate extrapolations can be made, over
extended energy ranges, using polynomials of low order (some examples are given in QDT II).
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CALCULATION OF ENERGY LEVELS 5

Using Y we obtain the condition for bound states, in place of (2.6),
Y+ (tanm) /4 = 0. (2.15)

That this cquation is superior to equation (2.6) may be appreciated by considering the special
case of hydrogenic systems, for which we have R = Y = 0. Equation (2.6) reduces to tan v = 0
giving, for the bound states, v = nwheren = 1,2, 3, .. . Equation (2.15) reduces to (tan v)/4 = 0.
Putting ¢ = —1/»® we sce from (2.12) that 4 = 0 forv = 1,2, ..., It follows that (tanTv)/4 & 0
for v = 1,2,...,1. The equation (tantv)/4 = 0 gives v = n where n = ([+1), (I+2), ..., which
is obviously correct.
2.2, Many-channel theory

For cnergies such that all channels are open the asymptotic form of the wavefunction may be
described in terms of a reactance matrix R with elements R,,., as defined in paper 1.

We use the convention that quantities not in boldface type, and withoutsubscripts, are diagonal
matrices. Thus when all channels arc closed we have a diagonal matrix tan v with diagonal
clements tan Ty,. On extrapolating R we obtain the equation for bound states (see Qpr1),

|R +tanTy| = 0. (2.16)
Define a matrix 4 with diagonal elements
la
A, = 3 (1+e,p%. (2.17)
=0
For all channcls open, but energies such that exp ( —1/4/e) < 1, the matrix Y is defined by
Y = A-*R4A-L (2.18)
We put Y=Y,Y;, (2.19)
and fitY; and Y, to polynomials in theenergy (the exact procedures adopted are described in § 3).
For bound states we obtain the many-channel generalization of (2.15):
|Y + (tan ) /4| = 0. (2.20)

The numerical methods used for solving this equation are described in § 4.
The theory allows us to obtain the amplitudes of the contributions to the bound state wave-
functions from each channel «. Let the radial function in channel a be

Pp) = 2.(p) Z., (2.21)
where Z.(p) p_zm(2p/ Vy)'ee Pk, (2.22)
K, = [Vl (vy+1,+1) I'(v,—1,)]% (2.23)

The vector Z with components Z, is such that
{Y + (tanTv)/A4} qA3Z = 0, (2.24)
where q = (—=1)'(2/mwv3)*cos . (2.25)

Equation (2.24) has solutions other than Z = 0 only when (2.20) is satisfied.
The normalization condition for the bound state wavefunction is

) ® 2 _ 3
[ Poyap =1, (2.26)

It is shown in QDT 1 that this condition is satisfied if
ZT¢Z = 1, (2.27)
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6 HANNELORE E. SARAPH AND M. J.SEATON

where Z7 is the transpose of Z and where
€ =1+4¢(dR/de)q. (2.28)

The significance of the quantities Z, may be understood as follows. The functions ¢ are
proportional to v—# and it therefore follows from (2.28) that { = 1+ O(v~2). So long as » is not too
small, { is approximately equal to unity. In practice { ~ 1 for v > (I+1). With { = 1 the nor-
malization condition (2.27) is ZTZ = 1. For one-channel cases we obtain Z, = 1 and it follows
that the functions with asymptotic form (2.22), are normalized to

f : P2(p)dp = 1. (2.20)

For the many-channel case it may also be assumed that the functions £, satisfy approximately
the normalization condition (2.29), so long as v, is not too small. In this case we have the inter-
pretation of Z, that the total normalized wavefunction for the system is of the form

v=3V,Z, (2.30)

where the functions ¥, for each channel are normalized to unity, (¥,|¥?,) = 1.

The position is more complicated if the energy is such that, for some value of «, v, is less than
(l,+1). For I, <v, < (I,+1), 4, is negative and K, and Z, are pure imaginary. In order to
avoid complex numbers we introduce V,= Atz (2.31)

which is always real. For v, large, 4, tends to unity and V, tends to Z,. We also introduce
W, =V(ZTVZ) (2.32)

as a useful measure of the contribution of channel « to a given energy level.

2.8. Limitations of the present form of quantum defect theory

A rigorous mathematical development of quantum defect theory has been obtained on making
the assumption that, beyond some finite radius 7,, all potentials other than pure Coulomb
potentials can be neglected. This assumption cannot be strictly justified in practice, since one has
interaction potentials V,.(r) behaving for large r like r—™ with m > 2. In the equations solved in
paper I there are potentials of quadrupole type (m = 3) but no dipole potentials (m = 2). We
consider to what extent the presence of quadrupole potentials will invalidate the use of the theory
which has been described.

For the smaller values of [ the dominant interactions are of a short-range nature. For/ = 0and 1
it is found that no practical difficulties arise in using a theory which takes no explicit account of
long-range interactions.

The difficulties which arise for larger values of / are best appreciated by first considering the
one-channel case. For large /, R is small and the bound states occur at v ~ ({+1), (/+2), .... For
the one-channel case the theory in which short-range potentials are assumed predicts that ¥
should remain finite at » = 1, 2, ..., [/, and hence, since R = AY, that R = 0 at these values of ».
For functions having this behaviour, (2.15) does not give roots at v ~ 1, 2, ..., /. We now consider
the behaviour of R for a case in which long-range potentials are included. The quadrupole

potentials are proportional to Vo(r) = yo(PP|r) (2.33)

in the notation of paper I. Figure 1 shows R calculated for / = 3 in the e + O?" problem, by the
use of the quadrupole potential ¥, and the distorted wave approximation. It is seen that no
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CALCULATION OF ENERGY LEVELS 7

reasonable extrapolation of this function will pass through zero at v = 3. If we calculate Y = R[4
and extrapolate Y in the usual way, we find that Y is singular at v = 8 and that (2.15) has a
spurious root in the vicinity of v = 3. In order to check that the difficulty encountered is due to
the long range of the potential ¥, R has been recalculated (Billings 1967) on replacing ¥, by a
continuous function ¥, such that V,(r) = V,(r) for r < 5, and V,(r) = 0forr > 7.5. This gives the
function R’ shown in figure 1. It is seen that R’ extrapolates to zero at » = 3.

0.15r

1 1 1 | 1 ! J
-0.1 0 0.2 0.4 € 0.6

FiGure 1. (¢) The R-matrix for f~waves and the potential V, (equation (2.33)), which behaves like 73 for r large
(6) The R’-matrix for f~waves and a potential ¥V, such that ¥, =V, for r < 6.5, V; = 0 for r > 7.5.

If we are concerned only with one-channel cases, the difficulty encountered is not so serious,
since we would not be interested in the region » < (/+ 1). For many-channel problems, however,
we have the further complications that the values of v, in some channels may be much smaller
than the values in other channels, and also that there may be coupling between states of different
[, In such situations the difficulties encountered using the short-range theory cannot be avoided.
In principle, one could use a more general form of quantum defect theory, which takes long-range
potentials explicitly into account, but this would involve numerical calculations of much greater
complexity (Billings 1967). In the present work no attempt has been made to apply a more
general form of the theory.

The function R’ shown in figure 1 was calculated by Dr A. G. Billings, and we are indebted to
him for permission to quote his results.

3. EXTRAPOLATION TECHNIQUES
3.1. The calculations of paper I

We summarize the results obtained in the course of the work described in paper I. Calculations
were made for electron collisions with ions in configurations 1s?2s22p? with ¢ = 1 to 5. The LS
coupling representation (1.1) was used throughout. Since fine structure was not included, the
ions with ¢ = 1 and 5 were taken to have a single energy level, denoted by { = 1, and the ions
with ¢ = 2, 3 and 4 to have three levels, denoted by 7 = 1, 2 and 3 in order of increasing excitation
energy. Energy-difference parameters 4; are defined as

4, = [E(S,L) — E(S, L)) |2~ (3.1)
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8 HANNELORE E.SARAPH AND M. J.SEATON

'The kinetic energy of the colliding electron, when the ion is in level 7, is k% = z%;. It follows from
(2.1) that ¢; = 4, +¢;. Calculated values of 4; were used in paper I; the numerical values used
may be obtained from tables 3 and 9 and equation (2.40) of 1.

Coupled integro-differential equations of Hartree-Fock type (equations (2.57) of 1) were
obtained for the calculation of the radial functions for the colliding electron, and approximate
solutions of these equations were obtained by the methods described in §§ 2.7, 2.8 and 3.1 of I.
Calculations were made for all partial waves by means of the distorted wave approximation, and
more accurate solutions for the p-waves ({ = 1) were obtained from the exact resonance approxi-
mation. The internal consistency of the results indicated that the errors in the collision strengths
introduced by using the distorted wave approximation for / > 1 and the exact resonance approxi-
mation for { = 1 should not exceed a small percentage, and this has been confirmed by the work
of Smith, Conneely & Morgan (1969) and of Henry, Burke & Sinfailam (1969), who have
obtained exact solutions of the coupled equations. The distorted wave results for the s-waves
({ = 0) are of a lower accuracy. The s-waves do not contribute significantly to the inelastic
collision cross-sections and in consequence no attempt was made to improve the accuracy of the
s-wave calculations. It is noted in § 2.3 that our extrapolation techniques may be unreliable for
[ > 1. The work of the present paper is therefore largely restricted to consideration of the p-waves.

The configuration 1s?2s22p? n/ may interact with 1s?2s?2p2»’ /" where !’ = [ + 2. The calculations
of paper I show that interaction between z#p and n’fis generally small, and such interactions are
therefore neglected in the present work. In some cases interaction between ns and n'd may be
more important.

3.2. Extrapolation procedures

For all of the ions considered in the present paper the p-wave reactance matrices R have been
calculated for five energies, ¢; = 0.00, 0.05, 0.10, 0.25 and 0.50 where j = 1 for ¢ = 1 and 5, and
J = 8for ¢ = 2,3 and 4. The Y matrices are calculated using (2.18) and fitted to functions of the
energy variable ¢,. At this stage we use calculated energy differences 4,. We put ¥ = ¥, Y31 where

Y,(¢;) = Dy +Dye;+... + DL, (3.2)
Yy(e1) = Doy +Dyypert+ ... + D, q 6% (3.3)

Given Y matrices calculated for m different values of the energy, one of the coeflicient matrices
D,, may be chosen arbitrarily and the remaining coefficient matrices may then be computed on
solving a system of simultaneous linear equations. The choice of s in (3.2), (3.3) depends on the
behaviour of ¥ (¢;). For the p-waves the ¥ matrices frequently have poles in the energy range of
interest and it would therefore not be satisfactory to attempt to represent Y as a polynomial in
¢, (that is, to take Y, to be constant). We find that satisfactory results are obtained on taking
s = m— 1, which gives Y, as a linear function of the energy. '

It is convenient to arrange that Y¥; and Y, are never unreasonably large. Let us put

Y = tanmm. (3.4)
The matrix n may be computed as follows. We diagonalize Y,
YX = Xtanm7, (3.5)
where tan 77 is diagonal. We then have

n = X7X-. (3.6)
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CALGCULATION OF ENERGY LEVELS 9

It has been noted that one of the coefficient matrices D, in (3.2), (3.3) may be chosen arbitrarily.
Our choice is to take, in (3.3),

D, = cosm, (8.7)
where 1, is the value of n calculated for ¢; = 0. Since y varies fairly slowly with the energy, we
then have Y, ~sinmy, Y, ~ costm. (3.8)

As a check on the extrapolation procedures we have made calculations with m = 3 and with
m = 4, and with different choices for the m energies used for the determination of the coefficient
matrices. We find in all cases that the different extrapolation procedures give results in close
agreement, and we therefore conclude that the extrapolations should be quite reliable.

3.3. Coupling schemes

The R and Y matrices and the coefficient matrices D,, are first calculated in the representation
S; L;ISL. In this representation all matrices are diagonal in SLMg M, and independent of Mg M;.
We shall also require the matrices in the representations S; L; J;{jJ and S;L; J;IKJ. In practice we
transform the coefficient matrices. The transformation from S; L,ISL to S; L, J;[jJ is made by
using 9- recoupling coefficients,

D,,(S; LiJiljd, SiLi T3 ) = ZA(Si L( o), 3(5)s J1Si3(S), Lil(L), J)
SL

x D, (8; LiISL, SLiI'SL) (S:%(S), Lil'(L), J|S:Li(J7), 3(j"), )} (3.9)
and the transformation from §; L; J; [jJ to S; L, J;{KJ is made by using 6-f recoupling coeflicients,
D, (S; LiJ KT, S;Li T3l K'J) = Z{(JU(K), %, J| I, 15(7), J)
i’

X Dy (8; L Ji [T, SiLi T3l T) (T3, U3(57), J|J0(K), %, J)}. - (3.10)
The procedure of transforming coefficient matrices, rather than R or ¥ matrices, has the following
advantages: (i) The size of the matrices in SL coupling is generally smaller than that of the
matrices in the other representations, and it is therefore best to obtain the coefficient matrices
before making transformations; (ii) once the coeflicient matrices have been obtained in any
representation, the R and ¥ matrices in this representation are easily calculated for all values of
the energy; (iii) at energies close to polesin R and Y the elements of R and Y are large and big
cancellation errors would result in attempting to make transformations. No such difficulty
arises when transforming the coefficient matrices calculated using the methods described in § 3.2.
The 9-j and 6-j recoupling coefficients were calculated by using subroutines provided by the
Atomic Physics group at the Meudon Observatory.

4. CALCULATION OF ENERGY LEVELS
4.1. Energies of the ion core
Table 1 gives experimental energy parameters
A(SiLeJy) = [E(S, L J7) — E(S, Ly J)1 2> (4.1)
for the first three ions in each isoelectronic sequence. In (4.1) S; L, J; is the ion ground state.
Insolving for the energies of the valence-electron states we usually take the independent energy

parameter to be vy, the effective quantum number for the valence electron referred to the ion
ground state. The effective quantum number referred to any other ion state is then

v, = [4;+1/v3]-3. (4.2)

2 Vol. 271. A.
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10 HANNELORE E.SARAPH AND M. J.SEATON

In solving (2.20) we use the experimental values of 4;. Some calculations are made neglecting
fine structure. We then use parameters 4(S; L;) defined as

A(S; Ly) = [E(S; L) — E(S, Ly)]/2 (4.3)
where v
o ?(2‘L£+1)E(Sil'i‘]i)
ESiL) = “ 5 GL ) (44)

TaBLE 1. OBSERVED ENERGIES FOR IONS IN CONFIGURATIONS 1s22522p¢

(A(S; L;J;) = [E(S;L; J;) — E(S, L, J,)]/2® where 8, L, J, is the ground state and z is the charge on the
ion. Energies E(S;L;J;) in Rydberg units.)

g=1 ground state *Py

ion A4(*P3) reference
Cu 0.000578 —_— e Johansson (1966)
N 0.000397 — — — Moore (1949)
O1wv 0.000391 - —_ Moore (1949)
¢ =2 ground state 3P,
ion A4(3Py) A(3P,) A(*Dy) A(1Sy) reference
Nu 0.000447 0.001196 0.139567 0.297867 Eriksson & Johansson (1961)
Om 0.000259 0.000699 0.046182 0.098383 Moore (1949)
Fiv 0.000228 0.000621 0.025558 0.054216 Moore (1949)
g =3 ground state *Sg
ion 4 (ZD%) 4(*Dg) A(*Py) A(*P3) reference
On 0.244496 0.244304 0.368788 0.368774 Moore (1949)
Fm 0.077736 0.077651 0.117461 0.117461 Palenius (1969)
Nerv 0.041741 0.041697 0.063167 0.063172 Tilford & Giddings (1065)
g =4 ground state P,
ion A(P,) A(Py) A(ADy,) A(1S,) reference
Fo 0.003115 0.004471 0.190214 0.409344 Lidén (1949)
Nemr 0.001481 0.002112 0.058872 0.127004 Moore (1958)
Narv 0.001120 0.001596 0.031309 0.06742 Moore (1949)
¢=>5 ground state *Py
ion A4 (2P,1.) reference
Nen 0.007113 — — — Litzén (1968)
Nam 0.003111 — — — A.M. Crooker & C.N.Wu
(1968) (priv. comm.)
Mgiv 0.002254 — -— —— Moore (1949)

Our use of calculated ion energies in the first part of the calculations, and experimental ion
energies in subsequent work, requires some further justification. We use calculated ion energies in
obtaining R matrices, and in obtaining from them the ¥ matrices in terms of analytic functions
of ¢; = —1/v3. However, in order to make meaningful comparisons between theory and experi-
ment for the energies of the valence-electron states it is necessary to use experimental encrgies
for the ion cores; we therefore use experimental values of 4, in solving (2.20). Some justification
for the procedure adopted was obtained on making calculations, in the distorted wave approxi-
mation, with various assumed values of 4;. It was found that the ¥ matrices are generally less
sensitive than the R matrices to the adopted energy differences, and vary more slowly as functions
of the energy. The reason for this is that a considerable part of the energy dependence of the
R matrices comes from the A% factors in the relation R = AV A%,
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CALGULATION OF ENERGY LEVELS 11

4.2. Solutions for bound states
Equation (2.20) is not in a form convenient for numerical computations. It is best to work with
functions which are always finite. By using (2.19) it is readily shown that (2.20) is equivalent to
[{(sinTrv)[4} Y, + (cos Trv) ¥y| = O. (4.5)

This equation is solved by iterative numerical methods.

4.3. Adjustment of Y matrices

Our method of making semi-empirical adjustments in the ¥ matrices may best be understood
by first considering a simpler method which has been used for many years (see, for example,
Slater 1929). The configuration 2p np gives six terms,

o = 2pnpSL, (4.6)
with SL = 1S, 1P, 1D, 3§, 3P, 2D. Assume that radial wavefunctions have been calculated by using
a central potential. The variational expression for the energy is E, = (¥,| H|¥,). One obtains

E, = Ey+/3(2) Fy— go(@) Gy — ga(a) G, (4.7)
where E,, F,, G, and G, are integrals involving the radial functions and f,(x), go() and g,(a) are
known algebraic coefficients, given in table 2. The semi-empirical procedure is to adjust the four
quantities Ey, F, G, and G, so as to obtain a best fit to the observed positions of the six terms.
Our problem is to obtain a generalization of this method for use in many-channel quantum
defect theory.

TaBLE 2. COEFFICIENTS f), g, IN EXPRESSION (4.7) FOR E(2pnpSL)

SL Je & &
1S + 0.4 -1 —0.4
38 +0.4 +1 + 0.4
1p -0.2 +1 —0.2
p —-0.2 -1 +0.2
1D +0.04 -1 —0.04
3D +0.04 +1 +0.04

A variational principle for the scattering phase matrix & has been described by Seaton (1967)
and in § 2.2 of paper I. A similar variational principle is readily obtained for the matrix v defined
in § 3.2. Consider a trial function ¥t with asymptotic form which may be expressed in terms of a
matrix Yt The variational principle gives a corrected ¥ matrix

YX = [sin Tt + (cos Tmt) ™dn] [cos Tt — (sin ) Tdn] ! (4.8)
where 8y is proportional to (Wt| /- E |¥*). In the distorted wave approximation one obtains
an expression of the form

&y (a,a’) = E;A{f/\(“, a’) 8F, — g (o, a') 8G,}, (4.9)

where the coefficients f, and g,, for configurations 1s22s22p?nl, are given in paper I. We use
expressions of the form (4.9) for 8y, and take 8F) and 8G, to be variational parameters. Two
further simplifications are made: (i) It is found that v varies slowly with energy and we therefore
take 8 to be independent of the energy. (ii) It was explained in § 3.2 that we take ¥ = Y, Y31
where Y, ~ siny, Y, ~ cosm. In place of (4.8) we take
YE=Y,+Y,wdy, YX=Y,-Y mdy. (4.10)
2-2
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12 HANNELORE E.SARAPH AND M. J.SEATON

5. RESULTS FOR ENERGY LEVELS

5.1. Sources of error in the calculations

(a) Ion wavefunctions

We use Hartree-Fock wavefunctions for the ion cores, 1s22s22p? Quadrupole interactions
are neglected in the calculation of these functions, but are included in the calculation of the
energies 4, of the ion core. In this approximation the same radial functions are obtained for each
term S; L, of the core.

The approximation used for the ion core functions is fairly crude, as may be seen on comparing
observed and calculated core energies. Significantly different R-matrices might be obtained by
using more accurate core functions.

(b) Accuracy of the solutions of the coupled integro-differential equations

Results for s-waves, calculated in the distorted wave approximation, will be of low accuracy.

Reactance matrices for the p-waves calculated in the exact resonance approximation, should
agree to within 1 or 29, with matrices obtained from exact solutions of the coupled integro-
differential equations. Neglect of coupling between p-waves and f~waves will generally not lead
to any important errors, but may be significant if a p-state happens to be very close to an f-state.

The use of distorted wave results for the d-states should not lead to important errors, except
when s-states come close to d-states. It should be noted, however, that the quantum defects for
the d-states are generally small and the quantum defects for the s-states are sometimes close to
unity. It follows that one can get large interactions between states #s and (n—1) d.

(¢) Other configurations not included in the calculations

All of our calculations are for configurations of the type 1s22s22p?nl. The neglect of coupling
to configurations of other types will in many cases be the main source of error in our work.

TaABLE 3. TERMS IN CONFIGURATIONS 15225%2p¥

x+y
- A

3 4 5 6 7
2 2po 3p 4So 3p 2Po
D 2De D —_
IS 2P0 1S —_—

1 ip 5So ap 3Po 2§
2D 3PDo 2D 1po —_—
28 3Po 2§ . .
2p 1Do 2p . .
— 350 — I —
J— 1Po — — —
0 450 3p 2Po 1§ —
2Do 1D — J— J—
2Po 1S — —_— —

In table 3 we list the terms in configurations 1s2s*2p¥, in order of increasing excitation energy.
Along an isoelectronic sequence the energy differences between these terms behave essentially as
linear functions of z, whereas the binding energy of a valence electron varies essentially as z2.
This has a number of implications.
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CALGCULATION OF ENERGY LEVELS 13

Let us first consider the case of the #p valence electron states for small values of z. In our work

we calculate energies for configurations

15%2s22p2 np, (5.1)
neglecting interaction with configurations such as

1s22s2pe+in’s. (5.2)
For small values of z the levels belonging to the configuration (5.2) will generally lie in the
continuum, well above the 1522522p? series limit. If we were to solve the collision problem allowing
for collisional coupling between 1522522p? and 152252p?+! we would obtain series of resonances in
collision cross-sections, due to states of the type (5.2), at energies below the 2s2p?+! limit. At
continuum energies which are lower than the energy of the lowest resonance of the type (5.2) the
effect of collisional coupling between 2s22p? and 2s2p?+! will be to introduce an additional
attractive polarization potential, behaving asymptotically like c/r# (Castillejo, Percival & Seaton
1960). The effect of such a potential will be to increase the scattering phase shifts, and to give
larger binding energies for the valence electron states. The same conclusion may be reached from
the standpoint of perturbation theory; high levels of the type (5.2) will produce a downward
perturbation of the levels (5.1).

In the above discussion it is assumed that #'s in (5.2) is a valence electron, z’ > 3. We could
also consider the case of n’ = 2, that is to say interaction of (5.1) with 1s22s?2pe+1, Approximate
allowance for interactions of this type have been made in the work of paper I.

Next, let us consider the zp valence electron states for larger values of z. As z increases levels
belonging to the configuration (5.2) will move down relative to the 2s?2p? and 2s2p?+! levels of
the ion core, and will eventually become true bound states. The effect of such states will be to
produce perturbations in the series of levels belonging to the configuration (5.1). The interactions
which produce resonances in collision cross-sections for small values of z give rise to series
perturbations for larger values of z. The case of the ¢ = 2 isoelectronic sequence has been
discussed in detail by Eissner, Nussbaumer, Saraph & Seaton (1969). For ¢ = 2 the lowest state
of the type (5.2) which interacts with (5.1) is

152252p3(5S) 3s4S. (5.3)
For N1, the neutral atom in the sequence, this state lies above the 25?2p?3P limit, for Omitis a
bound state lying just below the 3P limit, and for the higher members of the sequence it is more
tightly bound. To summarize, we may say that interaction between the configurations (5.1) and
(5.2) will have the following effects: for neutral atoms, to increase the binding energies for the
valence—electron states belonging to the configuration (5.1); for more highly ionized atoms, to
produce perturbations in the series belonging to (5.1). These effects are generally smallest for the
neutrals. On comparing calculated and observed levels we therefore expect to find the largest
discrepancies for the more highly ionized systems.

A further complication arises for the s- and d-valence electron states: the configurations
2s22p?ns and 2522p?nd may be perturbed by 2s2p?+2, This type of perturbation, which has been
discussed by Edlén (1964), is not allowed for in our calculations.

5.2. Some illustrative results

In the present section we discuss the results obtained for a few representative cases, with
emphasis on the methods used in making the calculations; in § 5.3 we discuss more systematically
the results obtained for neutral atoms, and in § 5.4 we discuss results for isoelectronic sequences.
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14 HANNELORE E.SARAPH AND M. J. SEATON

(a) Calculations neglecting fine structure

Most of our work is concerned with the p-states. Neglecting fine structure, we use the
representation
o = 1522s22p2(S; L;) np SL. (5.4)
The allowed values of S; L, and SL are given in table 4. It is seen that for some values of SL only
one value of S; L, is allowed, giving simple one-channel cases. The results of the energy level
calculations for these cases are most conveniently expressed in terms of the effective quantum
numbers v; or the corresponding quantum defects

My =N =V,
where the principal quantum number 7 is assigned in the usual way. For other values of SL, two
or three values of S; L; are allowed. In these cases one has coupling between states belonging to
different parent terms of the ion core. For each bound state energy level, we may obtain effective
quantum numbers v, for each contributing ion term. The components V; of the vectors ¥ provide
a useful measure of the relative contributions from the states of different parentage.

TaBLE 4. StaTES p4(S;L;) pSL

SL

q S; Ly s A \
land 5 2p 1S 1p D — 3S 3p 3D — — —_
2 and 4 P 25 p D — 1S P D — —
1D B > T A S

19 S

3 1S — — - —_ — —_ 3p — — 5P
2D - 1p 1D 1R . . sp D) 3F —

2p 1S 1p D — —_ 38 3p D — —_—

In table 5 we give some illustrative results for the case of O 1 2p2ap. For SL = %S, 1S, 4P and D
we have simple one-channel cases, the parent term being the 3P ground term of O 1. For these
cases it is seen that the quantum defect varies slowly with n, and that the vector ¥ has only one
component, which is close to unity. For SL = 2F we have a one-channel case for which the parent
term is the excited 2p%'D level of O . This series contains only two bound states below the
O 11 3P limit. The states above this limit may auto-ionize to the 2p%(®P) ¢f 2F continuum, It should
be noted that, when the effective quantum numbers of the bound 2F levels are calculated relative
to their proper parent state, O D, the quantum defects show the same pattern as those of the
other one-channel cases.

For SL = 2P we have a three-channel case, and for SL = 2D a two-channel case. These are the
angular momentum states of importance for the calculation of the e+ Q2" inelastic collision
cross-sections, as described in paper I. In both the 2P and 2D series we obtain two levels, denoted
by 3'p and 4'p in the conventional spectroscopic notation, for which the 'D parent gives the
dominant contribution; and in the 2P series we obtain one level, 3"p, for which the contribution
from the 'S parent is dominant. It should be noted that, for all of the levels in the 2P and 2D
series, there is a quite large admixture of states of different parentage.

It has already been mentioned in § 5.1 that the state 2s2p3(5S) 3s4S lies just below the 2s22p? 3P
limit. This state will therefore perturb the higher members of the 2s22p?(3P) np 4S series, but in
our calculations these perturbations are not taken into account. Eissner et al. show that the states
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CALCULATION OF ENERGY LEVELS 15

252p3(®D) 3s 2D and 2s2p3(3P) 3s 2P lie, respectively, just above the 2522p2'D and IS limits. They
will produce some perturbations in the 2522p2np 2D and 2P series, and it is shown by Eissner e al.
that they produce important resonance effects in the inelastic collision cross-sections. Perturba-
tions of this type are of less importance for the valence-electron states of N1, the neutral atom in
the same isoelectronic sequence.

TABLE 5. CALCULATED EFFECTIVE QUANTUM NUMBERS AND VECTORS V FOR
Ou2p?(S;L;) npSL, NEGLECTING FINE STRUCTURE

SL n vy Vy vy |4 1A Vs SL n vy |4

s 3 2.396 e — —0.923 — — EN) 3 2.546 +0.914
4 3.421 — e + 0.960 — — 4 3.569 —0.957
5 4.430 e m—— —0.976 - — 5 4.575 +0.974
6 5434 — — +0.984 - 6 5578  —0.983
7 6.437 — e —0.988 v — 7 06.579 +0.988

P 3 2.550 2.239 1.993 +0.881 —0.229 + 0.080 ap 3 2.446 —0.920
3 2.999 2.520 2.187 +0.295 +0.869 —0.001 4 3.467 +0.959
4 3.578 2.842 2.384 +0.897 —0.187 —0.264 5 4.475 —0.975
3” 3.896 2.994 2.471 —0.319 +0.022 —0.866 6 5.478 +0.984
5 4.592 3.277 2.623 +0.946 +0.190 —0.122 7 6.480 —0.988
4’ 5.339 3.518 2.742 +0.518 —0.814 +0.027 aP 3 2.424 —0.921
6 5.685 3.612 2.786 —0.871 —0.441 —0.046 4 3.448 +0.960
7 6.621 3.820 2.878 +0.977 —0.134 —0.040 5 4.456 —0.976

D 3 2.5056 2.209 —_— —0.881 —0.253 —— 6 5.460 +0.984
3’ 2.939 2484 +0.314 —0.864 e 7 6.462 —0.988
4 3.562 2.834 — —0.936 —0.193 ——
5 4.535 3.256 — —0.951 +0.211 o
4’ 5.242 3.490 — +0.487 +0.833 e
6 5.631 3.598 — —0.896 +0.394 ——
7 6.578 3.812 ——— +0.978 +0.134 —

El O e 2.444 e e —0.920
4’ e 3.470 —_— e + 0.959

(b) Calculations including fine structure

Fine structure in valence-electron states 2p?#/ is mainly due to the fine-structure separations
in the 2p?ion core. When fine structure is neglected in the calculations it is difficult to make any
meaningful comparison of calculated and observed levels, particularly for the higher states. On
transforming to the representation (1.2), or (1.3), and using experimental energies for the core,
we make rather accurate allowance for the core contribution to the fine structure of the valence-
electron states. We do not attempt to make any allowance for the spin-orbit interaction energy
of the valence electron.

In comparing the calculations with experiment we adopt the following notation:

Calculated quantities (energies, effective quantum numbers, quantum defects, etc.) are
denoted by superscripts (c); Exact quantities, from experiment, are denoted by superscripts
(e); and Adjusted quantities, obtained by the theory described in §4.3, are denoted by
superscripts (a).

In table 6 we give results for all 2p?zp levels which have been observed in O 11. We give values
of 1@, the effective quantum number calculated allowing for fine structure, and the differences
between calculated and exact effective quantum numbers,

Sy = VO — @), (

=
S
N~—
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16 HANNELORE E.SARAPH AND M. J.SEATON

From table 6 we see that, for each term nSL, 5v(nSLJ) is practically the same for each value of J.
We may therefore say that the calculated fine structure is in good agreement with the observed
fine structure. This confirms our basic assumption, that the fine structure splitting in the valence-
electron states is mainly due to the fine-structure of the ion core.

TaBLE 6. CALCULATED EFFECTIVE QUANTUM NUMBERS FOR Ou2p?sp LEVELS, WITH FINE
STRUCTURE, REFERRED TO THE O ®P, LIMIT, AND DIFFERENCES BETWEEN CALCULATED AND
OBSERVED EFFECTIVE QUANTUM NUMBERS

SL J ple) ple) — ple) SL n J ple) ple) — ple)
28 1 2.3959 0.0432 1§ 3 3 2.5502 0.0652
2p 3 1 9.5524 0.0316 4p 3 3 2.4488 0.0280
3 2.5545 0.0326 § gig?f 0-8330
3’ 3 3.0044 0.0639 ® ) 0.0280
3 3.0047 0.0628 5 ¥ i-iggg . 52—48
4 1 3.5862 0.0352 ?: 45036 0.0257
3 3.5916 0.0365 2 ’ )
D 3 3 2.4250 0.0299
2D 3 3 2.5068 0.0330 3 2.4259 0.0299
3 2.5097 0.0326 5 2.4273 0.0299
3 3 2.9425 0.0722 Z 2.4293 0.0299
3 2.9431 0.0733 4 1 3.4501 0.0278
4 3 3.5659 0.0364 3 3.4523 0.0278
s 3.5749 0.0365 $ 3.4563 0.0278
5 3 4.5462 0.0327 z 3.4622 0.0279
s 4.5643 0.0327 5 3 4.4611 —
3 4.4647 0.0266
2F 3 s 2.8787 0.0413 s 4.4732 0.0269
1 2.8757 0.0408 I 4.4873 0.0271

(¢) Elimination of fine structure

Since 8v(nSLJ) depends little on J we may conveniently define a quantity 8»(nSL) independent
of J. We take the definition of this quantity to be

3 (2+1) 8v(uSL)
SSL) =y e

(5.6)

Let v@(nSL) be the effective quantum number calculated neglecting fine structure, and let
(c)
vO(nSL) be defined by YOnSL) = vO(nSL) —5v(nSL). (5.7)

We shall refer to v (nSL) as the exact effective quantum number, neglecting fine structure. Since this
quantity is used throughout much of our work, we recapitulate the steps involved in obtaining it:
(i) v9(nSLJ) is calculated allowing for fine structure.
(i) v®(nSLJ) is obtained from experiment.
(iii) dv(nSLJ) = vO(nSLJ) —v®(nSLJ) is insensitive to J and we form dv(nSL) independent
of J (using (5.6)).
(iv) v©9(nSL) is calculated neglecting fine structure.
(v) v®(nSL) is defined by (5.7).
It is seen that ¥@(aSL) is a quantity deduced from experiment, but that some use is made of
theory in eliminating fine-structure contributions to the energy.
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CALCULATION OF ENERGY LEVELS 17

In our calculations neglecting fine structure we obtain approximate solutions of a non-
relativistic Schrédinger problem. It may be expected that exact solutions of this problem would
give effective quantum numbers in close agreement with ¥ (nSL).

TABLE 7. DIFFERENCES, (V{® —1{®)), BETWEEN CALCULATED AND EXAGT EFFECTIVE QUANTUM
NUMBERS FOR O12p?(S;L,) npSL
Calculations in the exact resonance (e.r.) and distorted wave (d.w.) approximations

00— )
A

s N

SL n S;L; e.r. d.w.
28 3 3p 0.043 0.096
2p 3 3P 0.032 0.064
3’ 1D 0.038 0.050
3p 0.036 0.066
2D 3 3P 0.033 0.067
3 1D 0.045 0.060
4 3p 0.036 0.051
5 3p 0.033 0.058
2F 3’ 1D 0.025 0.058
18 3 3p 0.065 0.072
P 3 3P 0.028 0.068
5 sp 0.025 0.052
D 3 3p 0.030 0.075
4 3P 0.028 0.062
5 3p 0.027 0.057

As an example of the use of ¥ (nSL) we may consider the results for O 11 2p?np in two different
approximations. Table 7 gives values of (1@ — @) obtained using the R-matrices of paper I, as
calculated in the exact resonance (e.r.) and distorted wave (d.w.) approximations. It is seen that
the e.r. results are much superior to the d.w. results. In the remainder of the present paper we
consider only e.r. results for zp levels, but use the d.w. results for ns and nd levels.

(d) Effective quantum numbers referred to different series limits

Let us first consider the O 11 level 3'p 2F, for which the parent term is the first excited state of
the ion core, 2p21D. If we use effective quantum numbers referred to the 2p21D limit we obtain
V) = 2.444 in the e.r. approximation, and »{? = 2.419. The relation between v, and v, (the
effective quantum number referred to the 2p23P limit) is

==, (5.8)

From table 1 we obtain, neglecting fine structure, 4, = 0.0457, and hence »{® = 2.866,
»{®) = 2.826. Putting v, = v{® —1{®, we have 8v, = 0.025, dv; = 0.040. It is seen that &y, is
larger than 8v,; from (5.8) we have the approximate relation

vy ~ (v1/v,)3 8V, (5.9)
The accuracy of the calculations is, of course, best judged by considering the effective quantum
numbers, v,, referred to the correct series limit.

Whenever one state of the ion core gives the dominant contribution to the wavefunction for
a valence electron state, it is best to use the effective quantum number referred to that state of the

3 Vol. 271. A,
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18 HANNELORE E.SARAPH AND M. J.SEATON

core. This gives a fairly uniform basis for comparison of theory and experiment for all of the levels.
For some cases, however, one can get contributions of comparable magnitude for two or more
parent states; for these cases the selection of a series limit is essentially arbitrary.

In table 7, we have three levels, labelled 3'p 2P, 2D and *F, for which the dominant contribution
comes from the excited state, 2p? 1D, of the core (see table 5); for these levels we give effective
quantum numbers, v,, referred to the D limit. When this procedure is followed we see from
table 7 that for O 11 2p2 np the largest value of (v —{?)), in the e.r. approximation, occurs for
3p 4S. This is the level for which we would expect the theory to be least accurate since, as noted in
§85.1 and 5.2(a), the 2p%np S series is perturbed by 2s2p®(5S)3s4S. The point which we
wish to emphasize here is that if the effective quantum numbers for all of the levels in table 7
had been referred to the 2p23P limit, we would have obtained (¥{® —»{?) = 0.073 for the level
3'p 2D, in place of (VY —v§?)) = 0.040; it would then not have been apparent that the theory was
poorest for the 4S series.

(¢) Semi-empirical adjustments of the calculated matrices

It is seen from tables 6 and 7 that 8v is positive in all cases, which implies that the calculated
valence-electron binding energies are smaller than the observed binding energies (see § 5.1). The
effect of such systematic errors in the theory can be reduced on making semi-empirical adjust-
ments to the matrices, using the methods described in § 4.3.

In making these adjustments, fine structure may be neglected; the adjustments are made so
as to obtain better agreement between v (nSL) and v©(nSL).

In§ 4.3 it was stated that the correction matrices 8n were taken to be independent of the energy.
This may be justified by considering some simple one-channel cases. For these cases we can easily
calculate the exact values of 7; we put ¥© = n—x© and tan (@) = (tan (x®))/4 where, for
p-states, 4 = 1 —1/v2 In table 8 we give values of % and &y = (@ —%@) for the one channel
cases O 11 2p2np 4P and “D. For each series it is seen that © varies slowly and that 8y is practically
constant.

TABLE 8. VALUEs oF 9 FOR O12p?(®P) np 4P anp 4D

SL n 7}(0) (7/(0)._ 7)(0))

ap 3 0.545 —0.023
4 0.524 —0.024

D 3 0.563 —0.025
4 0.548 —0.026
5 0.542 —0.026

Let E®(nSL) be the energy of a term calculated using the adjusted matrices and let £©(nSL) be
the exact energy (neglecting fine structure), as obtained from ¥, defined in § 5.2 (¢). The four
parameters in the expression (4.9) for 8n are adjusted so as to minimize

D = Z{EO(nSL) — E®(nSL)}?, (5.10)

where the summation is normally taken over all observed terms of the type considered. Typically
we may use about 15 observed np terms for the determination of four parameters. The minimiza-
tion is effected by means of a computer subroutine written by Powell (1965), which we find to be
very satisfactory.

In some cases it is found that the minimization of (5.10) gives an improved overall agreement
between the exact energies £© and the adjusted energies £® but leads to a worse agreement for
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CALCULATION OF ENERGY LEVELS 19

certain important energy differences. If it is required to improve the agreement for some parti-
cular energy difference, say E(n'S’L") — E(n"S"L"), we may minimize

D = S{EO(nSL) — E®(nSL) > +{[EO(n'S'L’) — EO(n"S"L")] ~ [E®(w'S'L’) — E®(n"S"L")]}2
(5.11)

In effect, this means that we give more weight to certain levels in the minimization procedure.

5.3. Results for neutral atoms

In §5.1 it was argued that our method of calculation should be best for neutral atoms. The
results for neutrals are discussed in some detail in the present section, and results for isoelectronic
sequences are discussed in § 5.4.

(a) Results for CG1 2pnp

A very thorough analysis of experimental data for C1 is given by Johansson (1966).

(1) Calculations for C1 2p np neglecting fine structure. Fine structure contributions to the experi-
mental energies are eliminated using the method described in §5.2(c). Table 9 gives values of
VO, (V@ —p@) and (v®— @) for G12pap. It is seen that the errors in the calculated results,
(V@ —v®), are fairly large. Adjustment of Y leads to a reduction in the systematic errors, but the
residuals (v® —1®) are not as small as one would wish. It is worth discussing this simple case in
greater detail.

TABLE 9. EFFEGTIVE QUANTUM NUMBERS FOR C1 2p np

SL n ple) (V(c)_ y(e)) (y(a)_ V(e))
18 3 2.687 0.138 0.017
4 3.689 0.120 0.006
5 4.690 0.115 0.004
6 5.691 0.113 0.003
p 3 2.286 0.053 —0.001
4 3.313 0.049 —0.002
5 4.323 0.048 —0.003
6 5.327 0.045 —0.004
1D 3 2.511 0.060 0.006
4 3.5633 0.060 0.013
5 4.541 0.061 0.016
6 5.545 0.063 0.018
S 3 2.389 0.054 0.029
4 3.401 0.048 0.024
3P 3 2.451 0.079 0.006
4 3.475 0.082 0.018
5 4.483 0.084 0.022
6 5.486 0.085 0.024
D 3 2.321 0.043 —0.000
4 3.344 0.040 —0.001
5 4.352 0.040 —0.000
6 5.355 0.040 +0.001

We use the expression (4.7) for the Hamiltonian matrix, with coefficients f, and g, given in
table 2. In a simple perturbation theory treatment, based on a central-field model, we would use
the same radial functions for each of the terms within a configuration 2p zp. We would then have
four parameters, E,, F,, G, and G,, for the determination of the energies of six 2pnp terms,
ST, =18, 38, 1P, 3P, 1D and 3D. The exchange integrals G, may be eliminated on taking the
. 3-2
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20 HANNELORE E.SARAPH AND M. ]J.SEATON

arithmetic mean of singlets and triplets and, using the coefficients f, of table 2, we then obtain the
ratio (S — D) /(D — P) = 1.5. The observed value of this ratio for C12p3pis (S—D)/(D —P) = 1.14.
This illustrates the inherent limitation of the central-field model.

The exact resonance approximation should be more accurate than the simple central-field
model, in that we calculate the radial functions allowing for the A = 0 exchange term G, but
neglecting F, and G,. We then have two radial functions, one for g, = + 1 and one for g, = — 1.
In practice it is found that the exact resonance approximation may give a less good value for
the ratio (S —D)/(D —P); thus for C12p3p we obtain (S —D)/(D —P) = 2.22 using the values of
»© given in table 9. The adjusted results give some improvement, (S —D)/(D —P) = 1.43, but
not very close agreement with the observed value of 1.14.

These results for C1 emphasize the nature of the limitation of using expressions for matrix
elements of the form (4.7), obtained on restricting the wavefunction to a single configuration.
Further improvement could be obtained only on making explicit allowance for interaction with
other configurations.

TaBLE 10. FINE STRUCTURE RESULTS FOR G1 2p np

(y(ﬂ) — V(E))
r A N
SL J n=3 4 5 6 7 8
sp 0 0.0060 0.0171 0.0219 0.0243 0.0254 —
1 0.0061 0.0173 0.0221 0.0246 0.0258 —
2 0.0060 0.0172 0.0220 0.0244 0.0254 -
D 1 —0.0004 —0.0011 —0.0008 —0.0002 +0.0019 +0.0068
2 —0.0004 —0.0011 —0.0007 —0.0000 +0.0010 (0.0002) ¥
3 —0.0005 —0.0012 —0.0008 —0.0006 —0.0004 —0.0002
+ The term value for 2p 8p ®D, given by Johansson (1966) was obtained by extrapolation.

(i1) Calculations for G12p np including fine structure. Table 10 gives results of calculations allowing
for fine structure in the terms 2p np *P and ®D. The adjusted Y matrices have been used. It is seen
that for the lower levels, n = 3, 4, 5 and 6, we obtain values of (v® —»®) for each term which are
practically independent of J. The fine structure splitting of these terms is therefore given
satisfactorily by the theory. The larger discrepancies in the fine structure results for the higher
levels are a consequence of departures from SL coupling. This is illustrated in table 11 which
gives the weights W(a), in the SL coupling representation & = 2papSLJ, for the levels which are
labelled 2p np 3D,. It is seen that SL coupling is a very good approximation for the lower levels
but that no significant assignment of quantum numbers SZ can be made for the higher levels. The
level labelled 2p8p *D; contains appreciable admixtures of 3S, and 2P;. The error in the adjusted
results, Y® — p@, is fairly large for the 3S and 3P series, and in consequence the error for 8p 3D is
much larger than that for the lower np3D, levels. No such admixture of SL states occurs for
2p np *Dy, and for these levels the error in the adjusted results is seen to be much smaller and to
vary slowly along the series.

(iii) Calculations for C12p ns and 2p nd. For C1 the 2pns levels have quantum defects close to
unity and the 2pnd levels have quantum defects which are small. There is therefore significant
interaction between ns and (n — 1) d. These interactions are allowed for in our calculations, which
are made using the distorted wave results of paper I.

Results obtained with fine structure neglected are given in table 12. The terms 2D, ®P, 1D and
1P in the 2s2 2p ns and nd series ar> perturbed by the 25 2p3 configuration, but these perturbations
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TasrLe 11. WEIGHTS W(a), IN THE SL COUPLING REPRESENTATION
o = 2p np SLJ, For THE CI LEVELS LABELLED 2p np %D,

W(a)
r A A
n o =38 1p p 3D
3 0.000 0.001 0.000 0.999
4 0.000 0.007 0.001 0.992
5 0.001 0.046 0.003 0.950
-, 6 0.007 0.180 0.013 0.800
— . 7 0.038 0.347 0.049 0.566
< 8 0.111 0.384 0.125 0.380
P
O L[_L; TABLE 12. EFFECTIVE QUANTUM NUMBERS FOR CI 2p ns AND 2p nd
~ o SL n PO ple pe)— ple)
E O 1p 3s 2.049 1.951 0.098
O 4s 3.074 2.965 0.109
v 5 4.087 3.976 0.111
-l N 6s 5.104 4.992 0.112
5z 3d 3.017 3.013 0.004
E 9 4d 4.025 4,021 0.004
&b, 5d 5.037 5.035 0.002
2 X0 3p 25 2p? — 2.650 —
oz 3s 2.029 1.899 0.130
E é 4s 3.049 2.941 0.108
B = 5s 4.059 3.946 0.113
6s 5.053 4.955 0.098
3d 3.004 3.089 —0.085
4d 4.009 4,044 —0.035
5d 5.042 5.047 —0.005
1D 3d 2.964 2.890 0.074
4d 3.960 3.871 0.089
5d 4,962 4.866 0.096
D 25 2p° — 2.024 —
3d 2,975 2.962 0.013
4d 3.973 3.965 0.008
5d 4.994 4.975 0.019
1F 3d 3.019 2.988 0.031
) 4d 4.030 3.996 0.034
> < A 5d 5.046 5.010 0.036
~ SF 3d 2.990 2.952 0.038
2 4d 3.992 3.946 0.046
>_( >.4 5d 4.990 4.950 0.040
olm
oY E are not allowed for in our calculations. The experimental positions of 252p3 3P and 3D are given
= Q) in table 12. Moore (1949) estimates that 2s2p? 1P and D lie just above the 2s22p limit.
E ©) The 2s22pnd 'F and 3F series are not perturbed by the zs levels or by 2s2p3. The calculated
5

levels for these series are too high. This may be explained as a consequence of the neglect of
coupling with higher states. We have already remarked in § 5.1 that the effect of such couplings
will be to introduce an additional polarization potential; this is particularly important in
calculating quantum defects for nd states.

The 2s?2pnd 'D and 2D series are not perturbed by the ns levels but are perturbed by 2s2p?
1D and ®D. The level 2s2p? 1D lies above the 2522p limit and perturbs all 2s22p nd levels downwards.
This additional perturbation is not allowed for in our calculations and the difference between
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22 HANNELORE E.SARAPH AND M. J.SEATON

calculated and exact effective quantum numbers is therefore large. The level 252p®3D, on the
other hand, lies below the entire 2s22pnd3D series, and all levels in this series are therefore
perturbed upwards. The neglect of both upward perturbations by 2s2p33D and downward
perturbations by higher levels causes the calculated effective quantum numbers to be in
fortuitously good agreement with the experimental results.

For the 1P and 3P terms we have to consider both 2s22pns series and 2s22pnd series. For the
ns levels the calculated effective quantum numbers are too large by about 0.1, owing to the use
of the distorted wave approximation. In consequence the calculated separations of the levels ns
and (n— 1) d tends to be much smaller than the corresponding separations for the observed levels.
Owing to ns and (n— 1) d being very close, the calculated results have large interactions between
s and d states. For the 3P series these interactions are so large that it is difficult to make assign-
ments of / quantum numbers. A further interesting effect arises. The experimental positions for
each ns level are always below the corresponding (z—1) d levels, and the effect of s —d inter-
actions is therefore to shift the s levels down and the d levels up. For the calculated levels the error
in v for the s levels is such as to bring the calculated ns levels above the calculated (z— 1) d levels.
The calculated s — d interactions therefore work in the wrong direction, to depress the d levels and
to raise the s levels. We can now understand the trend of the results in table 12. The experimental
nd 1P levels are depressed by interaction with 2s 2p31P, which lies above the 2s22p limit, and the
calculated ndP levels are, incorrectly, depressed by s—d interactions: the close agreement
between »© and v® for this series is therefore entirely fortuitous. The experimental nd *P levels
are raised due to perturbation by 2s2p33P, and the values of (¥©—1®) are therefore large and
negative. The first member of the 2s22p ns 3P series is perturbed downwards by 2s2p? 3P, and all
other members are perturbed upwards; the effect of these perturbations is seen in the irregular
variation of (V© — @),

(b) Results for N1 2p2np

We use the experimental energy level data quoted by Moore (1949), together with the later data
of Eriksson & Johansson (1961). Fine structure is eliminated using the method described in
§5.2(c). Table 13 gives calculated effective quantum numbers v{® and values of (v{ —1{?) and
() —v10).

TABLE 13. EFFECTIVE QUANTUM NUMBERS »; FOR N1 2p? ($;L;) np SL

SL n S;L; v O -y @y | SL n S;L; Ve e I
28 3 3p 2.215 0.065 0.012 2F 3’ D 2.276 0.034 —0.005
4 3p 3.238 0.054 0.007 ag 3 3p 2.404 0.093 0.050
2p 3 sp 2.409 0.038 0.026 4 Sp 3.425 0.091 0.052
4 P 3403 — — %P3 P 2276 0.033 0.002
3’ 1D 2.365 0.037 0.018 4 3p 3.995 0.030 0.001
D 3 p 2.356 0.041 0.002 ap 3 3p 2.948 0.038 —0.002
4 P 3.346 - — 4 P 3210  0.033  —0.006
5or3’ 3P 4.214 0.190 0.011
5or3’ 3P 4.703 0.209 0.039
6 3p 5.485 — —
7 3p 6.449 — —_—

The 2P series contains one level, 3'p 2P, for which the 1D parent gives the dominant contribu-
tion, but does not contain a bound state, 3"p, of dominant 1S parentage: at the first ionization
limit, v, - 0o, one has vy = 1.835; the 3"p level will lie in the continuum, at vy ~ 2.3.
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CALCULATION OF ENERGY LEVELS 23

Our main interest in the N1 results is in making parentage assignments for the 2D series (in
table 13 all effective quantum numbers for this series have been referred to the 3P limit). Table 14
gives weights W, defined by (2.32), as obtained by using calculated matrices and adjusted
matrices. Using the calculated matrices, we see that W(1D) is smaller than W(3P) for all of the
levels, and that the largest value of W(*D) occurs for level number 4 in the table. Using the
adjusted matrices the largest value of W(*D) occurs for level number 3. For this level W(1D) is
nearly equal to W(3P) and there is little significance in attempting to make a parentage assign-
ment. Using the adjusted results we may predict the positions of levels which have not been
observed. The predicted positions of 4p 2P and 2D levels are given in table 15.

TasLE 14. WEIGHTS W(S;L;) FOR 2p? np 2D SERIES IN N1

calculated matrices adjusted matrices

level ~ A . - A .
number v W (3P) W (D) v W(P) W(D)

1 2.356 0.98 0.02 2.317 0.97 0.03

2 3.346 0.96 0.04 3.296 0.93 0.07

3 4.214 0.70 0.30 4.035 0.49 0.51

4 4.703 0.55 0.45 4.533 0.76 0.24

5 5.485 0.94 0.06 5.429 0.96 0.04

6 6.449 0.98 0.02 6.408 0.99 0.01

TABLE 15. PREDICTED TERM VALUES FOR NI REFERRED TO THE
2p2 3P, LivmiT AT 117214.0 cm™!

predicted term estimated value
level value/cm~—1 of x/cm™1
4p°Py 107681 +x —400
2P§ 107750 + x — 400
4p®Dyg 107 165+ x —30
2D§ 107233+ x —-30

Note. x = 0 gives the term value obtained by using adjusted matrices. Estimated values of x are obtained from
comparisons of adjusted and experimental results for other levels.

(¢) Results for O12p3ap

(i) Fine structure. In SL coupling the spin-orbit energy vanishes to first order for the 2p3 con-
figuration. The fine structure separations are therefore small for the 2p2 ion core and for the
valence-electron states with configuration 2p3n/. It is found that calculated fine-structure
separations for the valence-electron states, obtained neglecting the spin-orbit energy of the
valence electron, are not in good agreement with observed separations. To obtain any improve-
ment it would clearly be necessary to take account of the spin-orbit energy of the valence electron.
Since the observed fine-structure separations are small, we may average over fine structure and
compare with results calculated neglecting fine-structure.

(ii) Calculations neglecting fine structure. An interesting feature of the O 1 spectrum is that a large
number of 2p3n/ levels are observed above the 2p34S limit (Moore 1949). When fine structure is
neglected many of these levels are true bound states. Thus, for example, the 2p2al singlet levels
cannot auto-ionize to the 2p?(4S) e/’ continuum without violation of spin conservation, and levels
such as 2p®zp 35 and 3D cannot auto-ionize without violation of parity conservation. The levels
2p2(®D) np 3F can auto-ionize to 2p3(4S) e¢f 3F, but this level is observed spectroscopically which
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means that, even here, the auto-ionization probability must be small. A number of the levels
above the 4S limit will have finite, but very small, auto-ionization probabilities when fine-
structure is taken into account.

TABLE 16. CALCULATED EFFECTIVE QUANTUM NUMBERS V{®) AND WEIGHTS
W(S;L;) ror O1 2p® np

v W(S;L;)
A AL

d e N ~ N

e i= 1 2 3 1 2 3

~ SL n S;L;= 1S 2D 2p ag 1)) 2p
: 15 3 — — 2,407 — — 1.000
P 1p 3 — 2.220 1.748 — 0.910 0.090
ol 3” — 3.612 2.230 — 0.125 0.875
= ) 3 — 2.380 1.823 — 0.994 0.006
O 3” — 3.844 2.281 — 0.102 0.898

T 0O I 3’ — 2.250 — — 1.000 —
o 39 3” — — 2.243 — — 1.000
—_ sp 3 2.303 1.520 1.339 0.982 0.015 0.003
52 4 3.315 1.727 1.475 0.993 0.006 0.001
EQ 5 4.317 1.832 1.539 0.995 0.004 0.001
ak 6 5.308 1.890 1.573 0.989 0.009 0.002

034

RO 3D 3 — 2.210 1.743 — 0.998 0.002
oz 4 — 3.223 2.129 — 0.984 0.016
%é 3” — 3.557 2.216 — 0.028 0.972

&~ 3F 3 — 2.238 — — 1.000 _

5p 3 2.206 — — 1.000 — _

4 3.224 — — 1.000 — —

For states of the type 2p3(S; L;) np SL the allowed values of S; L; and SL are listed in table 4.
Table 16 gives some calculated effective quantum numbers »{, and weights W(S; L,). The only
serics with 2p34S parentage are 2p3 np ®P and °P. The 5P series is a simple one-channel case. The
3P series has contributions from all three channels but the 4S parentage contribution dominates
for all levels below the 4S limit. Above this limit the ®P states will have large auto-ionization
probabilities and are not observed spectroscopically.

A

TABLE 17. VALUEs oF (V{9 —p{®) anD (V@ —1{P) ror O1 2p3(S;L;) np SL

’\
A \
JA ©

~ SL n S, L; (v —v) (V@ — 1)
é 18 3” 2p 0.027 —0.011
S 1p 3" 2p 0.029 ~0.005
olm 1D 3 :D 0.039 0.004
= 3" °p 0.033 0.000
O 1F 3 2D 0.049 0.008
= O ap 3 13 0.028 ~0.001
o 4 48 0.028 ~0.009
o 5 18 0.029 ~0.011
3z 6 18 0.021 ~0.012
- ©) 3D 3 2D 0.042 0.004
o 5 . 4’ D 0.047 0.004
Q<0 3 2p 0.034 —0.003
oz 3F 3 D 0.051 0.011
TS 5P 3 15 0.031 —0.006
o 4 19 0.028 ~0.010
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Table 17 gives values of (v{? —»{®) and (V) — v{?) where, for each level, we select the value of
i giving the dominant parentage contribution. It is seen that the calculated results are in fairly
good agreement with experiment, and that the residuals are small after adjustments have been
made.

Referring to tables 16 and 17, it is seen that all of the observed levels have well-defined
parentage. The 3P series is observed up to # = 6. From table 16 it is seen that the %S parentage
contribution is dominant for n < 6.

Table 18 gives predicted term values for 2p%(2D) 3'p P and 2p3(2P) 3"p3S.

TaBLE 18. PREDICTED TERM VALUES FOR O1 2p® np

level T/cm—1 x/cm™1
2p3(2D) 3p 1P 113590+ x +100
2p%(2P) 3p°S 128 440+ x —170

(d) Results for F12p*np

The energy level structure for F1 2pnp is similar to that for N1 2p2np, discussed in § 5.4 (4)
above. We use the experimental data of Lidén (1949). Table 19 gives calculated effective quantum
numbers ¥ and values of (1 —1{) and (¥ — 14®). The general agreement between calcu-
lated and exact effective quantum numbers is fairly good, but adjustment of the matrices does
not lead to any very marked improvement. No difficulty arises in making parentage assignments
for the 2D series; in particular the level designated 3'p2D does not have much admixture of 3P
parentage. For the 2P series, on the other hand, we find that a strong admixture of D parentage
occurs in several levels but does not dominate any one level. We therefore conclude that the
assignment 2p*(*D) 3p 2P cannot be given to any one level.

'TABLE 19. EFFECTIVE QUANTUM NUMBERS FOR F1 2p*(S;L;) np SL

SL n S;L; v (v —v{) (V@ —v§)
S 3 3p 2.233 0.014 0.001
4 3p 3.249 0.021 0.009
ap 3 ap 2,296 0.049 0.030
4 ip 3.296 0.043 0.027
2D 3 op 2.206 0.022 0.010
4 op 3.224 0.024 0.012
3 D 2.219 0.019 0.006
i 3’ D 2.194 0.047 0.035
48 3 3p 2.233 0.014 0.001
4 sp 3.249 0.019 0.006
ap 3 ap 2.154 0.046 0.034
4 ap 3.171 0.038 0.026
‘D 3 3p 2.182 0.023 0.011
4 ip 3.199 0.022 0.010
5 ip 4.204 0.020 0.008

One further point may be noted. The algebraic coefficients in our formulation are identical
for the 2S and S series, and the calculated positions of 25 and 4S levels therefore coincide exactly.
When fine structure is eliminated, the values of ¥ (aSL) for 2S and 4S levels are very close, but
not exactly coincident. In calculations allowing for the fine-structure energy of the ion core, we
obtain larger differences between the 25 and 4S levels, in agreement with experiment.

4 Vol.271. A,
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TABLE 20. EFFECTIVE QUANTUM NUMBERS FOR NeI 2p®np, REFERRED TO THE 2p®*P; LiMIT,
AND WEIGHTS W(J;, K) CALCULATED BY USING ADJUSTED MATRICES. QUANTUM NUMBER
AsSIGNMENTS (J;, K) FRoM MOORE (1949)

W("i: K)
A
e Y
J J; K vy v vy JpK=143 53 3% %3 3%
3 0 3 1 2184 22086 2.205 044  — 056 @ — @ —
1 1 2288 2338  2.289 055  — 045  —  —
" 1 3 1 2068 2120  2.069 022 000 077 000  —
‘ 3 2147 2170 2.150 0.00 040 000 059  —
o 3 3 2177 2199 2181 0.08 055 002 034  —
< I 2190 2212 2207 0.68 004 021 007 —
= 2 3 5 2134 2156 2135 — 008 — 005 0.88
olm 3 2156 2177 2.162 — 038 — 050 012
= 3 3 2.181 2,203  2.196 — 054 — 045 0.0
O 8 5 2126 2149 2127 —  — — — 100
= O 4 0 3 1 3.228  3.252  3.243 018 — 08 @ —  —
o 3 1 3.3713 3418  3.380 081 — 010 @ —  —
—n 1 3 1 3101 3143 3.001 011 000 089 000 —
5z 3 3170 3189  3.173 0.01 003 000 097 —
=) 3 3 3.268  3.291  3.266 0.06 091 001 002 —
i I 3.276  3.300  3.287 0.82 006 011 001  —
<¢ 2 3 B 3154 3174 3152 — 001  — 003 096
oY% 3 3174 3192 3.186 — 003 — 094 0.3
=< 3 3 3.217  3.208  3.279 — 096 — 004 0.1
= 3 5 3144 3164  3.141 — = — 100
5 0 3 3 4255  4.285  4.264 005  — 095 — @ —
1 1 4532 4571 4545 094  — 006 —  —
1 3 3} 4115 4152 4105 0.04 000 095 000 —
3 4177 4194 4179 0.00 000 000 099  —
3 3 4437 4461 4.432 0.15 084 001 000 —
1 4438 4466  4.445 0.80 0.5 004 000 —
2 3 5 4161 4180  4.158 — 000 — 002 098
3 4180 4197  4.192 — 000 — 007 0.02
3 3 4446  4.460  4.446 — 099 — 00l 000
3 5 4150 4170  4.146 — - — 100
6 0 3 I 5269 5304 5276 002 — 098 —  —
3 1 5819 5855  5.838 096 — 004 —  —
o 1 3 1 51238 5158 5114 0.02 000 097 001 —
~ 3 5180 5197  5.182 0.00 000 000 099 —
— 3 I 5722 5754 5.720 051 047 002 000  —
< o 3 5728 5760  5.728 045 053 002 000 —
> C 2 3 5 5164 5183  5.161 — 000 — 002 098
oI i 5182 5109 51905 — 000 — 098 0.02
ez 3 3 5738 5763 5737 — 099  — 000 0.00
O 3 5 5153 5172 5.148 - — - = 100
T O 7 3 1 6282 6322 6.287 003 — 097 —  —
=w 1 I 7377 7.235  7.386 068 — 032  — —
29 1 3 3 6130 6161  6.114 0.05 000 095 001  —
o3 3 6182 6199  6.184 0.00 000 001 099  —
o 3 3 7216 7.243  7.211 0.07 069 002 022  —
= S 1 7.230 7.258  7.247 0.67 005 023 005
BZO 2 3 5 6166 6185  6.162 — 000 — 001 0.99
oz 3 6184 6201  6.197 — 000 — 098 001
== 3 3 7226  7.253  7.232 — 073 — 025 0.2
oy 3 3 5 6155 6174  6.150 — -~ - — 100
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TABLE 20 (cont.)

W( Ji’ K)
A
s N
J Ji K vy vy W JuK= §3 %4 %% %3 3,2
8 0 2 3 7.231 7.435 7.236 0.31 — 0.69 — —
3 % 9.083 9.119 9.113 0.81 — 0.19 — —_
1 3 3 7.099 7.143 7.075 0.24 0.00 0.76 0.00 —
3 7.175 7.195 7.172 0.01 0.25 0.00 0.74 —_—
3 2 — 9.012 8.943 0.80 0.02 0.19 0.00 —
1 8.960 9.019 8.975 0.01 0.97 0.01 0.01 —
2 3 5 7.164 7.183 7.158 — 0.08 —_ 0.07 0.85
3 7.183 7.201 7.187 — 0.18 — 0.69 0.13
3 3 8.995 9.032 8.992 — 0.98 — 0.02 0.01
3 3 s 7.156 7.174 7.150 — — —_ — 1.00
9 0 2 3 8.275 8.310 8.282 0.02 — 0.98 — —
3 3 11.482 11.554  11.499 0.82 — 0.18 — s
1 3 3 8.127 8.159 8.114 0.02 0.00 0.98 0.00 —_
3 8.184 8.199 8.185 0.00 0.00 0.00 0.99 —
3 3 — 11.302 11.245 0.06 0.83 0.02 0.10 —
3 — 11.320  11.292 0.69 0.06 0.23 0.03 —
2 3 s 8.173 8.186 8.163 — 0.00 — 0.02 0.98
3 8.184 8.202 8.197 — 0.00 — 0.98 0.02
3 $ 11268 11.319 11.275 — 0.88  — 0.10  0.02
3 3 5 8.161 8175  8.151 — — — — 1.0

(¢) Results for Nerx

The energy level structure for Ne 1 2p®(2P) nl differs from that for C1 2p(?P) #/ in that the levels
of the 2P core are inverted for Ne and the separation of the core components is much larger. Our
interest is mainly in the structure which results from the separation of the components of the
Net 2P core.

We have the following contributions to the energy:

(i) the energy of the core, 2p®2P;,, J; = § and $.

(i) the kinetic energy of the valence electron and the monopole electro-static interaction £,

(iii) the quadrupole direct electrostatic interaction F,.

(iv) the exchange electrostatic interaction Gy, A = [+ 1.

(v) the spin-orbit energy of the valence electron.

We shall assume that (v) is small and may be neglected. For large #, (iii) and (iv) are small
compared with the fine structure of the core and a representation involving the quantum number
J; must be used. For large /it may be assumed that (iv) is small compared with (iii). In this case
the pair coupling representation (J;, K) is appropriate (see §3.3); it should be noted that the
interactions (ii) and (iii) are diagonal with respect to K. For smaller values of / it is less obvious
that the pair coupling representation is appropriate. It so happens, however, that for most
values of J the exchange interaction (iv) is diagonal with respect to K.

(i) Results for Ne12p®(2P) np. In table 20 we give:

(o) From Moore (1949), quantum numbers z, J, J; and K and effective quantum numbers
Vf%e) referred to the 2p® 2Py limit. The assignment of quantum numbers J; and K will be discussed
below.

(8) Effective quantum numbers V%? obtained using calculated matrices.

4-2
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(y) Results obtained by using adjusted matrices, effective quantum numbers V%&) and weights
W(J;, K).

It is seen that the agreement between ¥ and »® is generally good and we may therefore have
some confidence in the use of the adjusted results for a discussion of quantum number assignments.
Using the representation (J;, K), we obtain large admixtures of states for the levels with n = 3;
for these levels a representation 2p3(*P) 3p SLJ would be more appropriate.

0.8 0.9
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F1cure 2. Quantum defects s, for Ne1 2p® np levels, against v3. A pair coupling notation, (J;, K), is used. For these
levels, experimental results are in very close agreement with results obtained by using adjusted matrices (see
table 20).

In figure 2 we plot quantum defects ug, referred to the 2Py limit, for levels np(3, K) J and
quantum defects y; for levels np(4, K) J, in both cases as functions of vy. We discuss separately the
series for different J values.

J = 0. From figure 2 it is seen that there is a strong perturbation between 8p(3,3) and
7p(3, 3). The effect of this perturbation is seen in the weights W of table 20.

J = 1. For J = 1 the matrix of the electro-static energy has the form

(JiK| H |, K') = {Ey+ Gy + 0.4C8(J, K, Jy K') +f3 (S K, J,K') By, (5.12)
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where the coefficient matrix f,(J; K, J;. K') is given in table 21. A curious feature of these results is
that the states (J;, K) = (3,3) and (3,%) are completely degenerate so long as one neglects
coupling between states with J; = } and J; = §. The separations between the levels (4, ) and
(1, g) shown in figure 1 are entirely due to the couplmg, through the coefficient f,, to states with
J; = 3. This coupling is weakest for 6p(%, 3) and 6p(3, }), which lie about midway between the
6p and 7p states in the series (3, %) and (3, ). A consequence of the near-degeneracy of the 6p
levels for J; = } is to give a large admixture of states, as is shown by the weights W in table 20; for
this case assignment of quantum numbers (J;, K) has little significance.

TaBLE 21. THE COEFFICIENT f,( J; K, J,K') FOR 2p5np, J = 1

Values of 25 f,.
J:K

r A Al
JI/K 3 4 i 4 i &
3 3 0 0 ~54/2 0
13 0 0 0 J5
3 3 —5,/2 0 -5 0
3 3 0 V5 0 4

A further feature of the J = 1 results is a large interaction between the 7pJ; = } levels and the
8p J; = § levels.

J = 2. The results of table 20 and figure 2 show a fairly weak perturbation between 7p(3, 3),
8p(2> 2) and Sp( 2> Z)

J = 3. For this case there is only one series and the quantum defect varies quite smoothly.

In summary we may say that our results confirm the pair coupling quantum number assign-
ments quoted by Moore for all levels with z > 3, with the exception of the 6p levels for J; = } and
J = 1, for which the quantum number assignments have little significance.

(ii) Results for Ne12p®(?P) nd. Energy levels for Ne 1 2p®nd have been calculated from distorted
wave R matrices, allowing for interaction with 2p®a’s. The results obtained are shown in figure 3.
Our assignments of pair-coupling quantum numbers, (J;, K)J, are in agreement with the
assignment quoted by Moore (1949). In figure 3(5) we plot calculated quantum defects py for
levels (3, K) J and gy for levels (, K) J, in both cases as functions of v. Figure 34 gives similar
plots of the experimental data. It is seen that the complicated pattern, which results from inter-
actions between series converging to the two Ne* limits, is reproduced quite accurately by the
calculations. Interactions with 2p®as are responsible for small perturbations near » = 9 and for
structure in the (2, %) 0 series. The absolute values of the calculated quantum defects are too
small by about 0.01. This may be explained as a consequence of the neglect of a polarization
potential, which will be approximately the same for all nd levels.

(iii) Results for Ne12p®(2P) ns. For the ns levels we may use quantum numbers (J;) J. Figure 4
shows experimental results for quantum defects 4 ;, and results calculated in the distorted wave
approximation. For the s-states the error in the d.w. results is large, 8» ~ 0.06. There are some
perturbations between the series (J;) J = ($) 1and (}) 1. Perturbations in the ns series (J;) J= (3) 2
and (3) 0 are due to interactions with zd states.
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5.4. Isoelectronic sequences

In comparing calculated and observed levels along isoelectronic sequences belonging to
configurations of type (5.1) we must consider the effect of interactions with configurations of

type (5.2).

(a) Results for the G1 sequence

We consider calculated results for configurations 2s22pnp, of type (5.1). The observed levels
are effected by interaction with configurations 2s2p2zs, of type (5.2).

The lowest term in 2s2p? is 252p2 P and the lowest level of the type 2s2p®a’s, which interacts
with 2s2 2p np, is 2s2p?(P) 3s *P. Some energy levels for C1, N1 and O ur are shown in figure 5;
we plot values of AE/z? relative to the 2522p 2P limit. For each ion we show the positions of the
levels 2s22p(2P) 3p and 4p 3P, and 2s2p2(*P) 3s 3P; we also show the position of the 2s2p?4P limit.

25 2’ limit
04 2s2p limit [
| |
| |
I . l
| |
| |
0.2 3s ! |
| 252pzlimit ;
L : | 25 2p“limit
! o e
N, 2s*2plimit L 2s29plimit | 2s”2plimit
&Nl o [ 25 =primit g
:j ’ | 3s I 4
4p | 4p | i Js
I | | 3
3 P
3p } b |
— 0.2k | |
| l
L ! l
C1 N1 O1r

F1cure 5. Energies AE/z? for the C1 sequence. For each ion the figure shows: (a) The position of the 2s22p(?P)
limit and the 3p and 4p levels in the series 25 2p(2P) np ®P. (b) The position of the 252 2p?(*P) limit and the
3s level in the series 2s 2p2(4P) ns *P.

For the valence-electron states values of AE/z2, relative to the appropriate limit, vary slowly along
the isoelectronic sequence; this variation is caused by the change in the quantum defects along
the sequence. The separation AE/z? of the two limits, 2s22p P and 2s2p?4P, varies much more
rapidly along the sequence.

For Ci1 the level 2s2p?(“P) 3s ®P has been obtained from the extrapolation along the sequence.
It is seen that this level lies well above the 2s22p 2P limit. For N 11 the level (P) 3s®P comes below
the 2s22p 2P limit and will produce a perturbation in the 2s22p (*P) np 3P series between n = 4 and
n = 5. For O, (*P) 3s 3P comes still lower and produces a perturbation in the (*P)np 3P series
between n = 3 and 4. A number of other 2s2p? n'l’ levels will also produce perturbations in O 11
series of the type 2s%2pnl. |
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Results for C1 25*2p np have been given in table 9 and similar results for N1 and O m1 are given
in table 22. For N1 it is seen that the error in the calculated results (¥ — 1) is largest for the
series (°P) np 3P, particularly for 4p 3P. This is a consequence of perturbation of the 3P series by
252p?(*P) 3s 3P. It is also seen that adjustment of the matrices does not give much improvement for
4p ®P; the form assumed in making the adjustments does not take account of perturbations of the
type which occur here. For O, the level (4P)3s3P lies below (2P)4p 3P, and 4p 3P is therefore
perturbed upwards. In our calculations we neglect this perturbation and other perturbations
which tend to produce downward shifts in the np levels; in consequence, we obtain a fortuitously
close agreement between ¥ and v for 4p 3P.

TABLE 22. EFFECTIVE QUANTUM NUMBERS FOR LEVELS 2522p np IN N1 AND O,
REFERRED TO THE 25%2p %P Limit

Nu Om
~ ~A ~ - % -

SL n e (V40— plo)) (Vo) — ple)) pe) (Vo) — pl)) (Vo) — ple))
18 3 2.746 0.054 —0.003 2.799 0.035 + 0.005

4 3.754 0.048 —0.007 3.802 0.047 +0.017
ip 3 2.471 0.040 + 0.004 2.576 0.028 —0.006

4 3.498 0.039 + 0.008 3.601 0.027 —0.004
1D 3 2.651 0.046 +0.003 2.724 0.035 + 0.004

4 3.667 0.049 +0.009 2.733 0.034 +0.005
3S 3 2.541 0.037 +0.001 2.632 0.027 +0.008

4 3.5657 0.032 -+ 0.000 3.647 0.021 +0.003
Sp 3 2.597 0.060 +0.030 2.677 0.046 +0.016

4 3.614 0.106 +0.078 3.689 0.000 —0.028
3D 3 2.498 0.033 —0.002 2.598 0.024 —0.004

4 3.521 0.032 +0.001 3.619 0.023 —0.002

(b) Results for the N 1 sequence

Perturbations in the N 1sequence have been discussed by Eissner et al. (1969) (see §§ 5.1 and 5.2).
The lowest level of the type 2s2p®a’l’ which interacts with 2s22p2np is 2s2p3(5S)3s%S. The
(5S)3s 4S level lies above the 2s22p?23P limit for N1 but below the 3P limit for all other ions in the
sequence.

Results for N1 2p2np are given in table 13 and results for O 11 have been given in § 5.2 (tables 5
to 7) in the course of a discussion of our methods of computation. In table 23 we give a summary
of results for O 11 and F 11, For each level we give effective quantum numbers v, where 2p2(S; ;)
gives the dominant parentage contribution (the significance of parentage assignments, for the
case of O 11, may be judged from the results given in table 5). The experimental data used for Ot
is taken from Moore (1949) and that for I mr is from the recent work of Palenius (1970). It should
be noted that for F i1 we have experimental data for all 2p23p levels, including those with !D and
1S parentage.

In both O and Fur it is seen that the largest discrepancies, »9 — 9, occur for 3p 4S; this is
a consequence of perturbations by (55)3s4S. In general, our adjusted results for Ou and Fur
are in rather close agreement with experiment, although it must be recognized that there are a
number of perturbations not correctly allowed for in our calculations. Some predicted level
positions for O 11 are given in table 24.

5 Vol. 271.  A.
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34 HANNELORE E.SARAPH AND M. ]J.SEATON

TABLE 23. EFFECTIVE QUANTUM NUMBERS »; FOR 2p%(S;L;) np SL 1x Ou and F

On Fm
' A Y r A B
SL n S;L; v PO — p© yE — @ v VP — v v — o
28 3 3P 2.396 0.043 0.011 2.502 0.032 0.007
4 3p — —_— — 3.529 0.033 0.011
2p 3 3p 2.5560 0.032 —0.002 2.631 0.028 0 002
4 3P 3.578 0.036 0.001 3.676 0.028 —0.003
3’ 1D 2.520 0.038 —0.002 2.624 0.032 0.003
4’ 1D 3.518 — — 3.613 —0.0081 —0.030
37 1S 2.471 — - 2.563 0.021 —0.006
4" 1§ — — — 3.571 0.013 —0.009
D 3 sp 2.505 0.033 0.005 2.593 0.027 0.003
4 3p 3.562 0.036 0.007 3.635 0.030 —0.003
5 3p 4.535 0.033 0.004 4.655 0.038+ 0.004
3’ 1D 2.484 0.045 0.005 2.592 0.036 —0.004
4 D 3.490 — e 3.576 0.020 —0.008
2F 3’ 1D 2.444 0.025 —0.008 2.548 0.021 —0.001
4/ D 3.470 —_ — 3.562 0.019 0.000
] 3 5p 2.546 0.065 0.030 2.631 0.056 0.004
p 3 3P 2.446 0.028 —0.003 2.550 0.024 0.002
4 3p 3.467 — — 3.569 0.024 0.004
5 3p 4.475 0.025 —0.003 4.575 0.0271 0.006
D 3 sp 2.424 0.030  —0.003 2,531 0.024 0.000
4 3p 3.448 0.028 —0.002 3.553 0.026 0.006
5 3p 4.456 0.027 —0.001 4.569 0.0431 0.023

1 These levels were not included in the calculation of the adjusted matrices, since the experimental level positions
were not available at the time when the calculations were made.

TABLE 24. PREDICTED TERM VALUES FOR 2p? np LEVELS IN O11

level T/cm™? %[/cm~1
(°P)4p*P; 246244 + x
1P 246286+ x 200+ 50
1p; 246379+ x
(°P)5p*P; 261184+ x 3545
(8)3p 2Py 252789 +x}
*Py 252803+ x +500

(¢) Results for the O 1 sequence

There is little good experimental data available for the higher members of the O1 sequence,
but extensive data has been compiled by Palenius (1969) for F 1. We therefore consider only the
case of Fr.

Table 25 gives results for 29 levels belonging to configurations 2p3zp in F 1. It is seen that, by
using adjusted matrices, the residuals (v{ —»{”) remain quite large for some of the levels.

The series 2p3(S; L;)np *P calls for special comment. We have three possible values for S; L;, 4S,
2D and 2P. Figure 6 shows |V}|, |V4| and |V| plotted against »;. There is no difficulty in making
assignments for the levels labelled 3'p (for which |V;| is larger than |V}] and |Vs|) and 3"p (for
which |V;] is larger than |V3| and |V|). Itis seen that there is an additional perturbation occurring
high in the 3P series, at v; ~ 13. In this region, |V;| passes through a maximum value, but remains
small compared with |V;|. Palenius gives a level labelled 4'p 3P, obtained from observed lines
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TABLE 25. EFFECTIVE QUANTUM NUMBERS »; FOR Fi1 2p3(S;L,) np SL

n S{ Li vi‘c) (V?) - Vge)) (Vga) _ Vge))
3”7 2p 2.583 0.030 0.006
3 2D 2.376 0.042 0.004
4’ D 3.409 0.051 0.024
3” P 2.393 0.021 —0.007
4” 2p 3.417 0.017 —0.005
3 2D 2.537 0.031 —0.004
4’ D 3.571 0.078 0.047
3 P 2.450 0.026 0.003
4 2p 3.475 0.023 0.005
3 D 2.409 0.035 0.003
4’ 2D 3.430 0.031 0.002
3” 2p 2.391 0.053 0.020
3 1S 2.455 0.026 —0.014
4 48 3.573 0.051 —0.003
5 45 4.572 0.060 0.022
6 4S 5.508 0.008 —0.024
3 D 2.435 0.032 0.009
3 2p 2.419 0.023 0.000
3 2D 2.375 0.032 —0.002
4 D 3.399 0.028 —0.001
3” 2P 2.381 0.022 —0.009
4" 2p 3.405 0.021 —0.006
3’ 2D 2.397 0.035 0.002
4’ D 3.418 0.031 0.001
3 48 2.374 0.025 —0.007
4 45 3.396 0.024 —0.006
5 18 4.404 0.024 —0.005
6 45 5.408 0.024 —0.004
7 45 6.410 0.025 —0.003
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Ficure 6. Values of |V;| for F 11 2p3(S; L;) np *P, calculated by using adjusted matrices.
5-2
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36 HANNELORE E.SARAPH AND M. ]J.SEATON

assigned to transitions 2p3(2D)3’d 3D — 2p3(2D)4'p 3P and 2p3(3D)4'p P — 2p3(2D)3’s3D. The
intensities in such transitions will be sensitive to |V,|. The observed level labelled 4'p P occurs at
v, = 3.408, whereas the maximum in the calculated value of |V;| occurs at v, = 3.486. It is clear
that there is no single level which can be correctly labelled 4'p 3P, in the sense that a state of
2p3(2D) parentage gives the dominant contribution to the wavefunction. A more detailed
comparison of calculated and observed results would have to be based on a study of calculated
line intensities.

(d) Results for the ¥ 1 sequence

Results for F12p*np have been given in table 19 and similar results for Ne mare given in table 26,
the experimental data being taken from Moore (1949). For Ne all levels with configuration
2p*3p have been observed. We do not consider higher members of the F 1 sequence, since there is
little good experimental data.

TABLE 26. EFFECTIVE QUANTUM NUMBERS V; FOR Ne1r 2p* (S;L,) np SL

SL n S, L; o Y — ) pE —
28 3 3p 2.389 0.030 0.002
2p 3 3p 2.429 0.047 —0.003

3’ 1D 2.383 0.054 0.011

3”7 15 2.352 0.035 - 0.003
2D 3 ip 2.369 0.033 0.000

3 D 2.377 0.033 0.000
2F 37 D 2.348 0.046 0.000
1S 3 P 2.389 0.028 0.000
ip 3 Sp 2.314 0.046 0.000
4D 3 3P 2.342 0.033 —0.006

For Neu the agreement with experiment is particularly good when adjusted matrices are used.
It is of interest to compare O 1 2522p?np with Nenr 2s22ptnp. All series 2s22p2np SL, with the
exception of SL = 2F, are perturbed by 2s2p33s SL. In § 5.4 () this perturbation was seen to be
particularly important for 2s22p2np 4S. For 2s22pnp SL, on the other hand, perturbations by
252p53s occur only for SL = 2P and P.

(e) The Ne1 sequence

There is little spectroscopic data available for higher members of the Ne1 sequence, and we
therefore do not consider this sequence further.

6. THE CALCULATION OF COLLISION STRENGTHS
6.1. Accuracy of the collision strength calculations

We have used the extrapolated matrices of paper I to calculate energy levels for configurations
2522p?nl, and we have attempted to make semi-empirical adjustments in the matrices so as to
obtain an improved agreement between observed and calculated energy levels. In undertaking
this work our original aims were to check the accuracy of the collision strengths of paper I, and to
obtain more accurate collision strengths using the adjusted matrices. In achieving these aims we
have been only partially successful. In many cases the differences between observed and calcu-
lated energy levels are largely due to perturbations, such as those between configurations
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CALCULATION OF ENERGY LEVELS 37

2522p?nl and 2s2p2+ia’l’, which are not allowed for explicitly in our formulation. Unfortunately
it is not possible to make a more explicit allowance for these perturbations, in a semi-empirical
treatment, since the number of unknown parameters would be much too large.

The difficulties which arise may be appreciated by considering the system e +O2*, The calcu-
lated energies for O" 2s22p2np are always higher than the observed energies. It is probable that
neglect of interactions between 2s22p?np and 2s2p®n’l’ is one of the main sources of error in the
calculations. We obtain some improvement in the energy levels using adjusted matrices, but in
making these adjustments we do not allow explicitly for interactions with 2s2p2n’l’. The work of
Eissner ¢t al. (1969) shows that interactions with 2s2p33s give rise to resonances in the near-
threshold collision strengths for excitation of terms in the O?* 2522p? ground-configuration. It is
clear that one cannot make anysignificant improvementin the O2* collision strength calculations
of paper I without taking explicit account of these resonant interactions.

For the case of electron collisions with singly ionized ions in configurations 2s%2p?, additional
resonances of a type not allowed for in our formulation occur only at energies well above excitation
thresholds. For these ions we may therefore attempt to obtain improved estimates of the near-
threshold collision strengths using the adjusted reactance matrices.

In paper I reactance matrices R were calculated by using theory energy differences, 4(?). In
the present paper we use 4 in calculating ¥ = A-*RA-* as a function of ¢;, but experimental
energy differences, 4{?, in all subsequent work. Let Y©(¢,) and Y®(e,) be the calculated and
adjusted Y matrices, and let

RO(e,) = AiYO)(e;) 44, (6.1)
RO(ey) = 44Y0(c) 44 (6.2)

be the corresponding R matrices. It should be noted that R© is slightly different from the
R matrix of paper I, since we use 4{ in calculating the factors A in (6.1); according to an
argument given in § 4.1, R© may be slightly more accurate than R of paper I.

We calculate collision strengths using the matrices R and R®. The adjusted matrices have
been obtained only for the p-states, and we therefore consider only the p-wave contributions to
the collision strengths, 2v?. These are the dominant contributions for transitions involving a
change in the spin of the target ion.

TABLE 27. p-WAVE CONTRIBUTIONS TO GOLLISION STRENGTHS:
CALCULATED RESULTS (C); AND ADJUSTED RESULTS (a)

i pp(2 2
ion ) Q (1}’ P%) X
() (a)
ct 1.03 0.89
Ne* 0.184 0.295
Qrp(*P, 1D) Qrp (3P, 1S) Qer(D, 18)
r A Al r A Al r A Il
) (a) (©) (a) (© (a)
N*t 2.66 3.06 0.288 0.450 0.028 0.056
Ft 1.23 1.27 0.140 0.142 0.019 0.020
Qrr(18,2D) Qrr (1S, 2P) Qrr(2D, 2P)
[ A Al r % Al r ~A A
(©) (2) (©) (a) (© (a)
ot 1.30 1.48 0.381 0.451 0.599 0.722
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Table 27 gives p-wave collision strengths for singly ionized ions, obtained using calculated
matrices, (c), and adjusted matrices, (a). In general, comparison of the (c) and (a) results gives
a useful indication of the accuracy of the calculations. We cannot, however, be sure that the (a)
results are always more accurate than the (c) results. We select a few cases for special comment.

(a) Qrr(2Py, 2Py) for Ne*

The adjusted collision strength is larger than the calculated collision strength by a factor of 1.6.
For e + Net we have six one-channel R-matrices in LS coupling. Using adjusted matrices we
obtain a marked improvement in the agreement with experiment for a large number of energy
levels (table 20). For this case the adjusted result for 2r? should be of quite high accuracy.

(6) Qer(*P, 18) for N

From table 4 it is seen that only the 2P total angular momentum state contributes to the
p-wave *P-1S transition. For 2P we have a 3 x 3 symmetric matrix containing six linearly inde-
pendent elements. But now from table 13 we see that only two members of the 2p2zp 2P series
in N1have been observed and that neither of the observed levels contain much admixture of the
state with 2p?1S parentage. It follows that we have no direct empirical information on the matrix
elements of importance for the calculation of 2v? (3P, 1S). In our adjustment procedure (see § 4.3)
we assume a functional form involving four adjustable parameters, I, F,, G, and G,, and obtain
values of these parameters by considering all 12 observed 2p2ap SL levels. This procedure may
lead to the (a) result for 2°?(3P, 1S) being more accurate than the (c) result, but we cannot be
sure that this will be the case.

(c) Qer(1D,1S) for N*

This is a sensitive case involving a lot of cancellation. The p-wave collision strengths are small
and there is a large difference between the (a) and (c) results. This is of little importance, since
the main contributions to 2(*D,'S) come from other partial waves.

For the other cases considered in table 27 the differences between the (c) and (a) results are
fairly small (factors not exceeding 1.2). This gives a fair indication of the accuracy of the
calculations.

6.2. Resonances in collision strengths

In the neighbourhood of a resonance the collision strength 2(¢,¢") varies rapidly as a function
of the energy. A detailed discussion of the theory for resonances in electron-ion collisions is given
in the paper QpT vl (Seaton 1969a). We are particularly interested in the collision strengths at
low energies for configurations 1s%2s22p? with ¢ = 2, 3 and 4. Denoting the three terms of the ion
by S;L;, ¢ = 1,2 and 3, we obtain resonances in 2(1,2) at energies below the threshold for
excitation of the term ¢ = 3. Reactance matrices are calculated at energies above the i = 3
threshold, and extrapolated to lower energies using the techniques described in §3.2. Some
typical results for resonances in colllision strengths £(1, 2) have been given in a review paper
(Seaton 19695). For many applications one may use collision strengths Q(1,2) averaged over
resonances; results for (1, 2) are given in paper 1.

For ions with ¢ = 3 one must also consider the collision strengths £2(2Dy, 2Dg). When fine
structure is taken into account, one obtains complicated profiles of over-lapping resonances.
Detailed results for £2(*Dg, 2Dy) in O* have been given by Martins & Seaton (1969), and values
of 2(2Dy, 2Dy) for other ions have been given by Martins, Saraph & Seaton (1969).
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CALCULATION OF ENERGY LEVELS 39

Further calculations of collision strengths in O%*" have been made by Eissner et al. (1969), who
make approximate allowance for resonance states of the type 1s22s2p®3s. More accurate calcu-
lations for various ions, allowing for coupling between configurations 1s22s22p? and 1s%2s2p?+?
in the collision problem, are being made at University College London.

Note added in proof 5 October 1971

We are indebted to Professor Edlén for bringing the following points to our attention.

(i) New measurements for N1 have been made by Eriksson & Pettersson (1971). They obtain
term values for 4p 2P and 2D which agree reasonably well with the predicted values of table 15.

(ii) Isberg (1967) gives term values for O1 5p and 6p °P. This series is unperturbed and values
of (1©—1@®) for 5p and 6p are similar to those in table 17 for 3p and 4p.

(iii) Eriksson & Isberg (1968) obtain 7" = 113204 cm~! for O1 (2D) 3p*P, which is not in such
good agreement with our estimate of 113590 + 100 cm™.

We are indebted to Dr P. de A, P. Martins for his help with some of the calculations reported in
the present paper. Some support for this work was provided by a grant from the Science Research
Council. Finally, we wish to thank Professor B. Edlén for a number of helpful discussions about
this work.
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